Todo ello ha sido posible gracias a un método desarrollado para medir, de manera directa, la estructura atómica de los nanomateriales.
Un equipo de investigadores de la Universidad de California en Los Ángeles (UCLA) ha conseguido, por vez primera, observar el interior de las estructuras más diminutas del mundo para crear imágenes tridimensionales de átomos individuales, así como de sus localizaciones. Todo ello ha sido posible gracias a un método desarrollado para medir, de manera directa, la estructura atómica de los nanomateriales.
Según explica uno de los autores del avance, el profesor de física e investigador del California NanoSystems Institute (CNSI) de la UCLA, Jianwei Miao, en un comunicado de dicha Universidad: "Este es el primer experimento en el que hemos podido ver directamente estructuras locales en tres dimensiones, a una escala de resolución atómica. Esto jamás se había hecho antes".
Para lograrlo, Mio y sus colaboradores usaron un microscopio de transmisión electrónica de barrido (STEM), que utiliza haces de electrones para visualizar cualquier objeto. Con este instrumento, los científicos hicieron incidir un estrecho haz de electrones de alta energía sobre una fina nanopartícula de oro, de sólo 10 nanómetros de diámetro (casi 1.000 veces menor que un glóbulo rojo de la sangre).
La nanopartícula contenía decenas de miles de átomos de oro individuales, cada uno aproximadamente un millón de veces menor que el ancho de un cabello humano. Estos átomos interactuaron con los electrones procedentes del microscopio. La proyección de sombras resultante de dicha interacción fue lo que proporcionó información sobre la estructura interior de la nanopartícula, a un detector situado bajo el microscopio.
Miao y sus colaboradores descubrieron que tomando medidas por este mismo sistema a la nanopartícula, pero desde 69 ángulos distintos, podían combinar los datos recabados por cada sombra individual, y reconstruir con ellos el interior de la nanopartícula en 3D.
Aplicando así este método, conocido como tomografía electrónica y previamente usado para la visualización tridimensional de la arquitectura de las células, los científicos pudieron ver directamente a los átomos individuales, así como la manera en que éstos se posicionaban dentro de la nanopartícula de oro estudiada.
Superando a la cristalografía de rayos X
Actualmente, la técnica más usada para visualizar estructuras moleculares en 3D a resoluciones atómicas es la cristalografía de rayos X.
En esta técnica, los rayos X interactúan con los electrones de las muestras a analizar, lo que hace que los rayos se desvíen ligeramente. Como los patrones de desviación dependen de la densidad electrónica con la que los rayos X se encuentren, dichos patrones constituyen una fuente de información sobre la posición y el tipo de átomos con los que el haz de rayos X ha interactuado.
Pero, según los científicos de la UCLA, la cristalografía de rayos X implica la necesidad de medir muchas muestras casi idénticas, y de establecer la media de resultados. Además, requiere de trillones de moléculas, lo que ocasiona que parte de la información se pierda en el proceso.
"Es como promediar a toda la gente de la Tierra para hacerse una idea de la apariencia de los humanos. En ese caso, se perderían completamente las características únicas de cada individuo", explica Miao.
Por último, la cristalografía de rayos X es una técnica muy potente para el estudio de estructuras de cristales perfectos (con átomos perfectamente alineados), pero la mayoría de las estructuras presentes en la naturaleza son no-cristalinas, es decir, presentan estructuras atómicas mucho menos ordenadas.
Noticia completa en Tendencias 21